Mobile Phone Sensing is the Next D Thing!

Andrew T. Campbell, Dartmouth College ACM MobiOpp 2010 Keynote Address

Wireless sensor networks have driven many great innovations over the last decade - represents a very active area of on-going research

The mote have been a superb platform for research

But, challenges remain

- Not ubiquitous
- Energy problem
- Scaling (cost and performance) problem
- Event unpredictability
- Don't have economy of scale

Importantly, sensor networks don't impact our everyday lives. Why?

People are out of the loop

But that's just changed

There's revolution going on ...

Meet the human "mote"

We're awash with sensor-enabled phones

Embedded sensors:

- 3-axis accelerometer
- Digital compass
- Proximity sensor
- Microphone
- Camera
- GPS

They're ubiquitous, sort of solve the energy problem, have economy of scale, and scale in performance.

Google Nexus one

Embedded sensors:

- 3-axis accelerometer
- Digital compass
- Proximity sensor
- Microphone
- Camera
- GPS
- Bluetooth

Nokia 6210 Navigator

Embedded sensors:

- 3-axis accelerometer
- Digital compass
- Microphone
- Camera
- GPS
- Bluetooth

And, at some point in the future ...

My fantasy phone: the cool green "emotional" phone

Embedded sensors:

- 3-axis accelerometer
- Proximity sensor
- Digital compass
- Pollution/air quality sensor
- GSR "emotion sensor"
- RFID/NFC
- Microphone
- Camera
- GPS
- Bluetooth

Why is this moment great time for research?

- Availability of sensor-enabled phones
- "Openish" platforms (mostly Linux based) and good development tools
- App delivery system in place
- Large scale deployment and experimentation now possible
- Potential for huge rich data sets

Your research can have significant impact.

You don't need any infrastructure to do this –well, very little, mostly cloud stuff.

Your phone can learn your behavior and about your life

I know what you are thinking

Sounds like an Orwellian nightmare!

Critical challenges in trust, privacy, security to be solved

Why do this, really?

You'll be able to answer lots of interesting questions and build new cool applications that could have significant societal impact

or, just have fun.

What is my personal air quality like today? Or, the air quality of my neighborhood, school, town, or city?

How stressed is the city this morning?

You can learn quite a lot from the "continuous sensing" of a limited set of widely available sensors on the phone, e.g., accelerometer, microphone, GPS/WiFi/Bluetooth

You can infer physical activity, social interaction, context and location.

In fact you should be able to infer a lot more about:

social networks, co-location, amount of time in conversation, intonation, isolation, emotion, loudness, modes of transportation, of restaurants visited cooking, eating, walking, cycli watching TV, listening to music, in a meeting, jogging, using the ATM, at the gym, playing squash, depression, hypertension

Many questions can be asked ...

How do social "conversation" networks evolve?

Work on audio networks by Tanzeem Choudhury (Dartmouth)

How is my physical, emotional and cognitive health?

Where are my friends and what are they doing right now?

Now imagine 1 billion "sensor enabled mobile phones" scattered across the planet

people are in the loop

This will lead to ...

Societal scale sensing

a global mobile sensor network

Likely to be cross-cutting research

- Social networks
- Population well-being
 - Transportation
- Green applications
- Recreation sports
- Virtual worlds
- Others.

I know what you are thinking

You can't cover a volcano with mobile phones!

NATIONAL

Find more wallpapers at www.nationalgeographic.com

Photograph by Steven L
On second thoughts, phones are getting cheaper and we have a ready supply of adventurous grad students ;-)

At an exciting point in the development of people-centric sensing applications

We started the metrosense project in 2006 to study people-centric sensing

People-centric sensing application domains

"The Rise of People-Centric Sensing", IEEE Internet Computing, July/August 2008 Public sensing gains scalability and sensing coverage by using people opportunistically as mobile sensors

People-centric sensing is based on an "opportunistic sensing paradigm" and an "interaction model" that captures interaction between people, and, between people and their surroundings

Emerging sensing paradigms

Hybrid approaches

Participatory

sensing (UCLA)

Opportunistic sensing (Dartmouth)

I'll give an overview of the apps/systems we built and learnt from

- BikeNet (personal/public sensing)
- CenceMe (social sensing app)
- SoundSense (personal sensing app)

Then, I'll talk about the need for new research for mobile phone sensing:

- Sense-learn-persuasion model
- Software for the phone
- Killer app

"The BikeNet mobile sensing system for cyclist experience mapping", ACM SenSys '07

We can answer many questions from sensor data

- How fit are you?
- Many cars along the route?
- What was the air quality and noise like?
- Lots of trivia: slopes, coasting, braking, working hard
- Overall health and performance along the route
- How did you compare to your buddies, community?
- Share information with your social network

CO2 Map of Hanover

http://bikenet.cs.dartmouth.edu

Lots of cars on that route?

I know what you are thinking

How do you do ground truth?

Many lessons learnt

"Sensing Meets Mobile Social Networks: The Design, Implementation and Evaluation of the CenceMe Application", ACM SenSys 2008

sensing with cenceme

cencing with cenceme

cencing with cenceme

cencing with cenceme

activity

activity

social context

significant places

CenceMe demo

Sensor presence is published on Facebook, myspace, twitter

Classifying activity on the Nokia N95

Activity classifier confusion matrix on the Nokia N95

	Sitting	Standing	Walking	Running
Sitting	0.6818	0.2818	0.0364	0.0000
Standing	0.2096	0.7844	0.0060	0.0000
Walking	0.0025	0.0455	0.9444	0.0076
Running	0.0084	0.0700	0.1765	0.7451

Supervised learning approach

Differentiated between sitting and standing is hard

Custom sensing hardware (e.g., Intel's MSP) can do better but these results are from the Nokia N95

Classifying talking/ non-talking on the Nokia N95

Conservation classifier confusion matrix on the Nokia N95

	Conversation	Non-Conversation
Conversation	0.83.82	0.1618
Non-Conversation	0.3678	0.6322

Design decision of 2/5 talk primitives to get into conversation and 4/5 to get out – more conservative

Poor performance for non conservation results because people aren't talking but others nearby are.

Duty-cycling on the phone for continuous sensing is critical

Results: Location and activity

"Supporting energy-efficient uploading for continuous sensing us mobile phones", Pervasive 2010
Results: Location and activity

"Supporting energy-efficient uploading for continuous sensing us mobile phones", Pervasive 2010

Results: Location and activity

"Supporting energy-efficient uploading for continuous sensing us mobile phones", Pervasive 2010

Results: Location and activity

"Supporting energy-efficient uploading for continuous sensing us mobile phones", Pervasive 2010

SoundSense

"SoundSense: Scalable Sound Sensing for People-Centric Applications on Mobile Phones", ACM MobiSys 2009 (with Tanzeem Choudhury)

SoundSense: Learn on the go

Detect Rank Learn

Classification confusion matrix for iPhone

	Ambient Noise	Music	Speech
Ambient Noise	0.9159	0.0634	0.0207
Music	0.1359	0.8116	0.0525
Speech	0.0671	0.1444	0.7885
Accuracy of the decision tree classifier			
	Ambient Noise	Music	Speech
Ambient noise	0.9494	0.0402	0.0104
Music	0.0379	0.9178	0.0444
Speech	0.0310	0.0657	0.9033

Accuracy of the markov model recognizer output

Daily diary app

New research needed in mobile phone sensing to push the vision forward

How much intelligence can we push to the phone?

Human behavior/context modeling

Labeluper Visedhlearn Glassify

User in the loop

Trainsupelvabed lear Glassify

Current people-centric sensing model

What else can we do with all that sensor data?

We can close the loop.

Be persuasive!

Persuasion model

Sense-Learn-Persuasion Model

Killer app for Sense-Learn-Persuasion Model

A microscope for personal, community and population-scale well-being

Well-being in health encompasses an overall state of wellness, not just the absence of disease.

Possible health related outcomes

Obesity, anxiety, depression, dementia, aging in place, metabolic syndrome (diabetes, elevated lipids, blood pressure), disease prevention (activity, food choices)

Well-being networks: the killer app?

With Ethen Berke, John Canny, Tanzeem Chodury, James Landay

Need for enabling software technology for mobile phone sensing

Phone SensorWare

Supporting continuous sensing significant challenge Many open challenges

Phone Machine Learning Toolkit

Many open technical challenges, such as: continuous sensing, duty cycling, comms, privacy, robust features, scaling, exploiting crowd-sourced data, light-weight classifiers, sharing, etc.

In summary,

Growing interest in sensing on mobile phones

Applications WatchMe, iCAMS, PEIR, Nericell Sensing with mobile phones UCLA, UIUC, Intel, Nokia, Microsoft, Motorola, UW, Duke, start ups: e.g., Sense Networks Human activity inferencing MIT, Intel, UW Workshops UrbanSense 08, MODUS 08

The mobile phone will serve as the main platform for sensing innovation over the next decade.

Your mobile phone will sense your surroundings, learn your behavior (what you do, where you go and how you interact with people and your environment), and help you navigate your day and improve quality of life.

Collectively, mobile phones will form societal scale sensor networks in support of community, urban, and global sensing applications and problem solving.

Thanks for listening!

Project page, papers, etc: http://metrosense.cs.dartmouth.edu
Thanks to many people's contributions http://metrosense.cs.dartmouth.edu/metro-people.html

Dartmouth College INSTITUTE FOR SECURITY TECHNOLOGY STUDIES

